An Intermediate Value Theorem for the Arboricities
نویسندگان
چکیده
Let G be a graph. The vertex edge arboricity of G denoted by a G a1 G is the minimum number of subsets into which the vertex edge set of G can be partitioned so that each subset induces an acyclic subgraph. Let d be a graphical sequence and let R d be the class of realizations of d. We prove that if π ∈ {a, a1}, then there exist integers x π and y π such that d has a realization G with π G z if and only if z is an integer satisfying x π ≤ z ≤ y π . Thus, for an arbitrary graphical sequence d and π ∈ {a, a1}, the two invariants x π min π,d : min{π G : G ∈ R d } and y π max π,d : max{π G : G ∈ R d } naturally arise and hence π d : {π G : G ∈ R d } {z ∈ Z : x π ≤ z ≤ y π }. We write d r : r, r, . . . , r for the degree sequence of an r-regular graph of order n. We prove that a1 r { r 1 /2 }. We consider the corresponding extremal problem on vertex arboricity and obtain min a, r in all situations and max a, r for all n ≥ 2r 2.
منابع مشابه
On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings
In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...
متن کاملSOME FUNDAMENTAL RESULTS ON FUZZY CALCULUS
In this paper, we study fuzzy calculus in two main branches differential and integral. Some rules for finding limit and $gH$-derivative of $gH$-difference, constant multiple of two fuzzy-valued functions are obtained and we also present fuzzy chain rule for calculating $gH$-derivative of a composite function. Two techniques namely, Leibniz's rule and integration by parts are introduced for ...
متن کاملMean value theorem for integrals and its application on numerically solving of Fredholm integral equation of second kind with Toeplitz plus Hankel Kernel
The subject of this paper is the solution of the Fredholm integral equation with Toeplitz, Hankel and the Toeplitz plus Hankel kernel. The mean value theorem for integrals is applied and then extended for solving high dimensional problems and finally, some example and graph of error function are presented to show the ability and simplicity of the method.
متن کاملThe uniqueness theorem for inverse nodal problems with a chemical potential
In this paper, an inverse nodal problem for a second-order differential equation having a chemical potential on a finite interval is investigated. First, we estimate the nodal points and nodal lengths of differential operator. Then, we show that the potential can be uniquely determined by a dense set of nodes of the eigenfunctions.
متن کاملShortcut Node Classification for Membrane Residue Curve Maps
comNode classification within Membrane Residue Curves (M-RCMs) currently hinges on Lyapunov’s Theorem and therefore the computation of mathematically complex eigenvalues. This paper presents an alternative criterion for the classification of nodes within M-RCMs based on the total membrane flux at node compositions. This paper demonstrates that for a system exhibiting simple permeation behaviour...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Math. Mathematical Sciences
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011